
A FAST NEWTON’S METHOD FOR A NONSYMMETRIC

ALGEBRAIC RICCATI EQUATION∗

DARIO A. BINI, BRUNO IANNAZZO† AND FEDERICO POLONI‡

Abstract. A special instance of the algebraic Riccati equation XCX − XE − AX + B = 0
where the n × n matrix coefficients A, B, C, E are rank structured matrices is considered. Relying
on the structural properties of Cauchy-like matrices, an algorithm is designed for performing the
customary Newton iteration in O(n2) arithmetic operations (ops). The same technique is used to
reduce the cost of the algorithm proposed by L.-Z. Lu in [Numer. Linear Algebra Appl., 12 (2005),
pp. 191–200] from O(n3) to O(n2) ops still preserving quadratic convergence in the generic case. As
a byproduct we show that the latter algorithm is closely related to the customary Newton method
by simple formal relations.

In critical cases where the Jacobian at the required solution is singular and quadratic convergence
turns to linear, we provide an adaptation of the shift technique in order to get rid of the singularity.
The original equation is transformed into an equivalent Riccati equation where the singularity is
removed while the matrix coefficients maintain the same structure as in the original equation. This
leads to a quadratically convergent algorithm with complexity O(n2) which provides approximations
with full precision.

Numerical experiments and comparisons which confirm the effectiveness of the new approach are
reported.

Key words. nonsymmetric algebraic Riccati equation, Newton’s iteration, Cauchy matrix,
matrix equation, fast algorithm, M-matrix

AMS subject classifications. 15A24, 65F05, 65H10

1. Introduction. Consider the following nonsymmetric algebraic Riccati equa-
tion (NARE) arising in transport theory:

XCX −XE −AX +B = 0, (1.1)

where A,B,C,E ∈ Rn×n are given by

A = ∆− eqT , B = eeT , C = qqT , E = D − qeT , (1.2)

and

e = (1, 1, . . . , 1)T ,
q = (q1, q2, . . . , qn)

T with qi =
ci

2ωi
,

∆ = diag(δ1, δ2, . . . , δn) with δi =
1

cωi(1+α) ,

D = diag(d1, d2, . . . , dn) with di =
1

cωi(1−α) .

(1.3)

The matrices and vectors above depend on the parameters 0 < c 6 1, 0 6 α < 1
and on the sequences 0 < ωn < . . . < ω2 < ω1 < 1 and ci > 0, i = 1, 2, . . . , n, such
that

∑
i ci = 1. For more details and for the physical meaning of these parameters,

we refer the reader to [14] and to the references therein. The solution of interest is
the minimal positive one, which exists as proved by J. Juang and W.-W. Lin in [14].

It was shown by C.-H. Guo [6] that this equation falls in the class of nonsymmetric
algebraic Riccati equations associated with a nonsingular M -matrix or a singular

∗This work was in part supported by MIUR Grant 2006017542
†Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy ({bini,

iannazzo} @mail.dm.unipi.it).
‡Scuola Normale Superiore, Piazza dei Cavalieri 6, 56126 Pisa, Italy (poloni@sns.it).

1

2 D. A. BINI, B. IANNAZZO AND F. POLONI

irreducible M -matrix, in fact arranging the coefficients as

M =

[
E −C
−B A

]
(1.4)

yields an M -matrix.
For this class of algebraic Riccati equations, several suitable algorithms exist for

computing the minimal positive solution: the Newton method [11], the Logarithmic
and Cyclic Reduction [2, 7] and the Structure-preserving Doubling Algorithm [10, 12].
All these algorithms share the same order of complexity, that is, O(n3) arithmetic
operations (ops) per step, and provide quadratic convergence.

Observing that the equation (1.1) is defined by a linear number of parameters, it
is quite natural to aim to design algorithms which exploit the structure of the matrices
and thus have a cost of order lower than O(n3) ops.

A step in this direction has been done by L.-Z. Lu [16] who has designed a vector
iteration whose limit allows one to easily recover the solution. The iteration has
a computational cost of O(n2) ops per step and converges linearly for α 6= 0 or
c 6= 1. The linear convergence is a drawback since the algorithm in many cases
needs a large number of iterations to converge and it is outperformed by algorithms
with quadratic convergence and O(n3) ops. In fact, the same author in [15] proposes
a mixed algorithm to speed up the computation. The algorithm starts with the
linear iteration of complexity O(n2) and switches to a quadratically convergent one,
of complexity O(n3), when some conditions are satisfied.

In this paper we consider the customary Newton method applied to (1.1). By
exploiting the rank structure of the matrix coefficients, we design an algorithm for
performing the Newton step in O(n2) ops. The new approach relies on a suitable
modification of the fast LU factorization algorithm for Cauchy-like matrices proposed
by I. Gohberg, T. Kailath and V. Olshevsky in [4].

The same idea is applied to implement the quadratically convergent iteration of
L.-Z. Lu [15] by an algorithm with cost O(n2) ops. We also provide formal relations
between the sequences generated by Lu’s and Newton’s iteration which enable one to
deduce the convergence of Lu’s algorithm directly from the well-known properties of
Newton’s method.

In the critical but still important case where the Jacobian at the solution is
singular, the convergence of Newton’s (and therefore Lu’s) iteration turns to linear;
also the mixed iteration proposed in [15] loses its quadratic convergence while the
iteration of [16] converges sublinearly.

In this case, which is encountered when α = 0, c = 1, we can get rid of the
singularity of the Jacobian and consequently of all the above mentioned drawbacks.
The idea is to apply the shift technique originally introduced by C. He, B. Meini
and N.H. Rhee [13] and used in the framework of Riccati equations by C.-H. Guo,
B. Iannazzo, and B. Meini in [9] and by C.-H. Guo [7]. With this technique, we replace
the original Riccati equation with a new one having the same minimal solution as the
original equation (1.1) but where the singularity of the Jacobian is removed. We
prove that the matrix coefficients of the new equation share the same rank structure
properties of the coefficients of (1.1). This enables us to design a fast Newton iteration
which preserves the quadratic convergence and keeps the same O(n2) complexity even
in the critical case.

As a byproduct of this analysis, we find that the approximation to the mini-
mal solution of (1.1) that we compute from the “shifted” equation is much more

A FAST NEWTON’S METHOD FOR A NONSYMMETRIC ARE 3

accurate than the one obtained by applying the algorithm to the original equation.
More precisely, it has been shown by C.-H. Guo and N. Higham [8] that in order
to achieve high accuracy it is necessary to use the singularity of M in the design of
algorithms, otherwise, we can only expect to achieve an accuracy of O(

√
ε), where ε

is the machine precision. With the use of the shift technique [9], the information on
the singularity of M is plugged into the algorithm and we may achieve full accuracy
in the approximation as confirmed by the numerical experiments.

The paper is organized as follows. After some preliminaries presented in Section
2, we show in Section 3 how to reduce one step of Newton’s iteration for (1.1) to
the solution of a linear system with a structured matrix and in Section 4 we deal
with the problem of solving such a system in O(n2) ops. In Section 5 we show that
the iteration proposed by L.-Z. Lu [15] shares the same displacement structure and
thus its complexity can be reduced to O(n2) as well, and we exploit the connection
between it and the Newton iteration. In Section 6 we deal with the critical case where
the Jacobian is singular, by using the shift technique. In Section 7 we address the
main numerical stability issues, and in Section 8 we present some numerical examples.
From the experiments performed so far, our method turns out to be much faster and
accurate than the existing methods. Finally, in Section 9, we discuss some possible
generalizations of this algorithm together with some research lines.

2. Preliminaries. A basic tool which we use is the concept of Cauchy-like ma-
trix [4]. A matrix C = (cij)i,j=1,...,n is called Cauchy-like if its elements are of the
form cij =

uivj

ri−sj
for some constants ui, vi, ri, si, i = 1, . . . , n such that ri 6= sj for

each i, j. If we define R = diag(r1, r2, . . . , rn) and S = diag(s1, s2, . . . , sn), we have
RC − CS = uvT , where u = [u1, u2, . . . , un]

T and v = [v1, v2, . . . , vn]
T . The operator

C 7→ RC −CS is called displacement operator, and u, vT are called the generators of
C. Generalizing, if there exist two diagonal matrices R,S such that RC − CS has
rank r, we say that C has displacement rank r. When r is small with respect to the
size of C, C is called a generalized Cauchy-like matrix with respect to the pair (R,S).

Note that, using (1.2), the equation (1.1) can be rewritten as

XD +∆X = (Xq + e)(eT + qTX);

therefore any solution X is Cauchy-like with respect to (∆,−D) and its generators
are u = Xq + e and vT = eT + qTX.

We will also need some basic facts onM -matrices. A matrix A = (ai,j) ∈ Rn×n is
called a Z-matrix if aij 6 0 for all i 6= j. A Z-matrix A is called anM -matrix if there
exists a nonnegative matrix B with spectral radius ρ(B) = r such that A = cIn − B
and r 6 c, where In is the identity matrix of order n.

The following results are well-known and can be found in [1].
Lemma 2.1. For a Z-matrix A it holds that:
1. A is an M -matrix if and only if there exists a nonzero vector v > 0 such that

Av > 0 or a nonzero vector w > 0 such that wTA > 0;
2. if A is nonsingular then A is an M -matrix if and only if A−1 > 0.

Lemma 2.2. Let A be a nonsingular M -matrix, then the Schur complement of
any principal submatrix of A is a nonsingular M -matrix.

Here and hereafter, inequalities on matrices and vectors are used in the component-
wise sense.

Another useful tool is the Sherman–Morrison–Woodbury (SMW) matrix identity
[5, p. 50].

4 D. A. BINI, B. IANNAZZO AND F. POLONI

Lemma 2.3 (Sherman–Morrison–Woodbury formula). Let D ∈ Rn×n and C ∈
Rk×k be nonsingular, and U ∈ Rn×k, V ∈ Rk×n. Then D − UCV is nonsingular if
and only if C−1 − V D−1U is nonsingular, and it holds that

(D − UCV)−1 = D−1 +D−1U(C−1 − V D−1U)−1V D−1.

The following lemma relates the SMW formula and M -matrices.
Lemma 2.4. Let D,C,U, V be real matrices satisfying the hypotheses of Lemma

2.3, with D and C diagonal and D,C,U, V > 0. Then, D − UCV is a (nonsingular)
M -matrix if and only if C−1 − V D−1U is a (nonsingular) M -matrix.

Proof. Let C−1 − V D−1U be a nonsingular M -matrix, the SMW formula yields

(D − UCV)−1 = D−1 +D−1U(C−1 − V D−1U)−1V D−1,

and since all terms on the right-hand side are nonnegative, one has (D − UCV)−1 > 0,
and using Lemma 2.1 one achieves the proof; the converse is analogous. By a conti-
nuity argument, the result can be extended to singular M -matrices.

3. Newton’s method. Newton’s iteration applied to (1.1), for a suitable ini-
tial value X(0), generates the matrix sequence {X(k)} defined by the solution of the
Sylvester equation [11]

(X(k+1) −X(k))(E − CX(k)) + (A−X(k)C)(X(k+1) −X(k)) = R(X(k)), (3.1)

where R(X) = XCX −XE −AX +B is the Riccati operator. Using the Kronecker
product notation, this can be written as

vecX(k+1)−vecX(k) =
(
(E−CX(k))T ⊗In+In⊗(A−X(k)C)

)−1
vecR(X(k)) (3.2)

where the vec operator stacks the columns of a matrix one above the other to form
a single vector. Thus Newton’s iteration is well-defined when the matrix MX(k) =
(E − CX(k))T ⊗ In + In ⊗ (A − X(k)C) is nonsingular for each k. With abuse of
notation, we call the matrix MX the Jacobian matrix at X, in fact it is the Jacobian
matrix of the vector function − vec ◦R ◦ vec−1 at vec(X).

The following result, proved in [8] by C.-W. Guo and N. Higham, provides suffi-
cient conditions for the convergence of the Newton method.

Theorem 3.1. Let

M =

[
E −C
−B A

]

be a nonsingular M -matrix or a irreducible singular M -matrix and X (0) = 0. Then
Newton’s iteration (3.1) is well-defined and the sequence {X (k)} converges monoton-
ically to the minimal positive solution of the NARE (1.1). Moreover, the Jacobian

matrix MX(k) = (E − CX(k))T ⊗ I + I ⊗ (A − X(k)C) ∈ Rn2×n2

is a nonsingular
M -matrix for all k > 0.

Note that the problem stated in equation (1.2) satisfies the hypotheses of the
previous theorem: in fact we have

M =

[
D 0
0 ∆

]
−
[
q
e

] [
eT qT

]
,

A FAST NEWTON’S METHOD FOR A NONSYMMETRIC ARE 5

and by Lemma 2.4 M is an M -matrix if and only if

0 6 1−
[
eT qT

] [D−1 0
0 ∆−1

] [
q
e

]
,

which reduces to

1 > eTD−1q + qT∆−1e =

n∑

i=1

c(1− α)

2
ci +

n∑

i=1

c(1 + α)

2
ci = c, (3.3)

in view of (1.3). This fact was observed also in [6].
In the following, we will consider a slightly more general case; i.e., when the

matrix M is a generic diagonal plus rank-one matrix. Hence, equation (1.2) becomes

A = ∆− ẽqT , B = ẽeT , C = q̃qT , E = D − q̃eT , (3.4)

where e, q, ẽ, q̃ are any nonnegative vectors such that M , as defined in (3.1), is a
nonsingular M -matrix or a singular irreducible M -matrix. Such generalization will
prove useful when dealing with the critical case.

Observe that Newton’s iteration for the coefficients of (1.1) defined in (3.4) can
be rewritten as

X(k+1)D +∆X(k+1) = (X(k)q̃ −X(k+1)q̃)(qTX(k) − qTX(k+1))

− (X(k+1)q̃ + ẽ)(eT + qTX(k+1)), (3.5)

i.e., X(k+1) is a generalized Cauchy-like matrix with displacement rank 2. This prop-
erty holds for all the iterates X(k), k > 1 of Newton’s method obtained with any
starting matrix X(0).

The Jacobian at X(k), in Kronecker product notation, takes the form

MX(k) = DT ⊗ In + In ⊗∆− (e+X(k)T q)q̃T ⊗ In − In ⊗ (ẽ+X(k)q̃)qT .

By setting D = DT ⊗ In + In ⊗∆, u(k) = ẽ+X(k)q̃, v(k) = e+X(k)T q, and

U (k) =
[
v(k) ⊗ In In ⊗ u(k)

]
, V =

[
q̃T ⊗ In
In ⊗ qT

]
, (3.6)

we can rewrite MX(k) as

MX(k) = D − U (k)V. (3.7)

Since U (k) ∈ Rn2×2n and V ∈ R2n×n2

, the inversion of MX(k) can be reduced to the
inversion of a 2n× 2n matrix using the SMW formula:

M−1
X(k) = D−1 +D−1U (k)(I2n − VD−1U (k))−1VD−1. (3.8)

This provides a new algorithm for implementing the Newton step, denoted by Algo-
rithm 1, which relies on the function fast solve for the fast solution of the system

R(k)x = b

R(k) = I2n − V D−1U (k)
(3.9)

6 D. A. BINI, B. IANNAZZO AND F. POLONI

function X(k+1)=NewtonStep (X(k))
u(k) = ẽ+X(k) ∗ q̃ ;
v(k) = e+X(k)T ∗ q ;
R(X(k)) = u(k) ∗ v(k)T −XD −∆X ;
R1 = [q̃T ⊗ In ; In ⊗ qT] ∗ (D−1∗vec (R(X(k)))) ;
R2 = f a s t s o l v e ((I2n − VD−1U (k))R2 = R1) ;
X(k+1) = D−1 (vec (R(X(k)))+[v(k) ⊗ In In ⊗ u(k)]∗R2) ;
return X(k+1)

end function

Algorithm 1: Fast Newton’s Step

in O(n2) ops. The function fast solve is described in the next section.

Note that since D is a diagonal matrix of size n2×n2, the matrix–vector product
with matrix D−1 costs O(n2) ops, and the identities

(vT ⊗ In) vec(M) =Mv,

(In ⊗ vT) vec(M) =MT v.

allow one to compute the remaining products in O(n2) as well. Therefore the overall
cost of Algorithm 1 is O(n2).

4. Fast Gaussian elimination for Cauchy-like matrices. We now address
the problem of solving the linear system (3.9) given the vector b and the vectors
q, u(k), v(k) such that

R(k) = I2n −
[
q̃T ⊗ In
In ⊗ qT

]
D−1

[
v(k) ⊗ In In ⊗ u(k)

]
. (4.1)

First note that under the hypotheses of Theorem 3.1 R(k) is a nonsingular M -
matrix by Lemma 2.4 applied to the nonsingular M -matrix MX(k) of (3.7). Carrying
out the products in (4.1) yields

R(k) = I2n −
[

G(k) H(k)

K(k) L(k)

]
(4.2)

with

G(k) = diag(g
(k)
i), g

(k)
i =

∑n
l=1

v
(k)
l

q̃l

dl+δi
,

H(k) = (h
(k)
ij), h

(k)
ij =

u
(k)
i q̃j

dj+δi
,

K(k) = (κ
(k)
ij), κ

(k)
ij =

v
(k)
i qj

di+δj
,

L(k) = diag(l
(k)
i), l

(k)
i =

∑n
l=1

u
(k)
l

ql

di+δl
.

(4.3)

Thus G(k) and L(k) are diagonal, and H(k) and K(k) are Cauchy-like. Their displace-
ment equations are

∆H(k) +H(k)D = u(k)q̃T , DK(k) +K(k)∆ = v(k)qT .

A FAST NEWTON’S METHOD FOR A NONSYMMETRIC ARE 7

Partition x and b according to the block structure of R(k) as x = [xT1 , x
T
2]

T ,
b = [bT1 , b

T
2]

T . Performing the block LU factorization of R(k) enables one to rewrite
the system R(k)x = b as

[
I −G(k) H(k)

0 S(k)

] [
x1

x2

]
=

[
b1
b̂2

]
(4.4)

where S(k) = I−L(k)−K(k)(I−G(k))−1H(k) and b̂2 = b2 −K(k)(I −G(k))−1b1. The
matrices I −G(k) and S(k) are nonsingular as they are a principal submatrix and the
Schur complement of a nonsingular M -matrix, respectively. Moreover, S(k) enjoys
the following displacement structure

DS(k) − S(k)D = K(k)(I −G(k))−1u(k)q̃T − v(k)qT (I −G(k))−1H(k).

This can be easily proved since D, ∆, I − G(k), I − L(k) all commute because they
are diagonal, in fact,

DS(k) = D(I − L(k))−DK(k)(I −G(k))−1H(k)

= (I − L(k))D + (K(k)∆− vqT)(I −G(k))−1H(k)

= (I − L(k))D +K(k)(I −G(k))−1∆H(k) − v(k)qT (I −G(k))−1H(k)

= (I − L(k))D −K(k)(I −G(k))−1(H(k)D − u(k)q̃T)− v(k)qT (I −G(k))−1H(k)

= S(k)D +K(k)(I −G(k))−1u(k)q̃T − v(k)qT (I −G(k))−1H(k).

Thus S(k) is a generalized Cauchy-like matrix with displacement rank 2 with respect
to the singular operator DS(k) − S(k)D. We can use this property to develop an
ad-hoc variation of the Gohberg–Kailath–Olshevsky (GKO) algorithm for the fast LU
factorization of matrices with displacement structure [4]. The GKO algorithm, for a
generalized Cauchy-like matrix S with generators M1 and N1, essentially goes on as
follows (ignoring pivoting for the sake of simplicity):

1. From the generators M1, N1 of

S =

[
d1 u1

l1 S2

]
,

such that DS − SD−MT
1 N1, recover the first row and the first column of S

and store them as the first column of L
[
1
l1
d1

]

and the first row of U
[
d1 u1

]

in the LU factorization of S;
2. Compute the generators M2, N2 of the Schur complement S2 − l1u1

d1
as

M2 =M12 −
l1
d1

m11, N2 = N12 − n11
u1

d1
;

where

M1 =

[
m11

M12

]
, N1 =

[
n11 N12

]
.

8 D. A. BINI, B. IANNAZZO AND F. POLONI

3. Apply the algorithm recursively to compute the LU factorization L2U2 of the
Schur complement S2 − l1u1

d1
; then reconstruct the factors

L =

[
1 l1

d1

0 L2

]
, U =

[
d1 u1

0 U2

]
.

The problem in our context is that d1 cannot be retrieved from the generators,
due to the singularity of the operator S 7→ DS − SD. In fact, it is easy to see that
the null space of DS − SD is the set of all diagonal matrices. Thus, we need a
different method to compute and update the diagonal elements of S through the LU
factorization. Our approach consists in storing the main diagonal of S in a vector s,
and updating it at each step of the Gaussian elimination as if we were performing
a customary (non structured) Gaussian elimination. This can be achieved at the
general step k by using the relation Sii ← Sii−LikUki. Since we only have to update
n elements at each step, the overhead of updating the diagonal is O(n2), and thus
the complete algorithm requires O(n2) ops. A simple implementation, which includes
partial pivoting, is given in Algorithm 2 and requires 10n2 ops.

function [PL,U]=fastPLU (d ,s ,M ,N)
% computes S=PLU, f o r S such t ha t d iag (d)∗S−S∗ diag (d) = M ∗N
% and Sii = si
% u keeps t rack o f the rows a l r eady taken as p i v o t s
u=[1 ,1 , . . . , 1] ’ ;L=U=zeros (n , n) ;
for k=1:n
Lik=(

∑
j MijNjk)/ (di−dk) for a l l i 6= k such that ui = 1 ;

Lkk=sk i f ui = 1 ;
choose p such that |Lpk| = maxi |Lik| ;
up=0;
Ukk=Lpk ;
Lik=Lik/Ukk for a l l i such that ui = 1
Ukj=(

∑
iMpiNij)/ (dp−dj) for a l l j = k + 1, . . . , n , j 6= p ;

Ukp=sp ;
Mij=Mij − LikMpj for a l l j , i such that ui = 1 ;
Nij=Nij −NikUkj/Ukk for a l l i = 1, . . . , n , j = k + 1, . . . , n ;
si=si − LikUki for a l l i such that ui = 1 ;
return L ,U ;

end function

Algorithm 2: Fast LU factorization

Using this algorithm, complemented with back-substitution, provides an imple-
mentation of the function fast solve(R(k)x = b) used in Algorithm 1 of section 3 of
complexity O(n2).

5. Lu’s iteration. L.-Z. Lu [15] proposed a different approach for solving the
Riccati equation (1.1) when the coefficients are in the form (3.4). The idea is applying
Newton’s iteration to an equation involving the displacement generators u = Xq̃ + ẽ
and v = XT q + e of the solution X. His algorithm can be expressed as the following

A FAST NEWTON’S METHOD FOR A NONSYMMETRIC ARE 9

iteration for the sequences {û(k)}, {v̂(k)}, k > −1:
[
û(k+1)

v̂(k+1)

]
= (R̂(k))−1

[
ẽ− Ĥ(k)v̂(k)

e− K̂(k)û(k)

]
, (5.1)

starting from û(−1) = v̂(−1) = 0 (as we will see later on, indexing from k = −1 will
simplify the subsequent analysis). Here R̂(k), Ĥ(k) and K̂(k) are defined as

R̂(k) = I2n −
[

Ĝ(k) Ĥ(k)

K̂(k) L̂(k)

]
, (5.2)

Ĝ(k) = diag(ĝ
(k)
i), ĝ

(k)
i =

∑n
l=1

v̂
(k)
l

q̃l

dl+δi
,

Ĥ(k) = (ĥ
(k)
ij), ĥ

(k)
ij =

û
(k)
i q̃j

dj+δi
,

K̂(k) = (κ̂
(k)
ij), κ̂

(k)
ij =

v̂
(k)
i qj

di+δj
,

L̂(k) = diag(l̂
(k)
i), l̂

(k)
i =

∑n
l=1

û
(k)
l

ql

di+δl
,

(5.3)

which are, formally, the same relations as in (4.2) and (4.3).
As a first result, since both algorithms are based on the solution of a system with

the same structure, we obtain that Algorithm 2 can also be used in the implementation
of Lu’s iteration to reduce its computational cost to O(n2). But there is a deeper
connection between the two algorithms.

Theorem 5.1. Let {û(k)}, {v̂(k)}, k > −1 be the sequences generated by Lu’s
algorithm for the NARE (3.4), and let {X (k)}, k > 0 be the sequence generated by
Newton’s iteration with starting point X (0) = 0 for the same problem. Then, for all
k > 0, one has

û(k) = X(k)q̃ + ẽ, v̂(k) = X(k)T q + e.

Proof. We will prove the result by induction over k. It is easy to check from
the definitions that R̂(−1) = I2n, and thus û

(0) = ẽ, v̂(0) = e; therefore the base step
k = 0 holds. As a side note, this means that we can save an iteration by starting the
computation from u(0) = ẽ, v(0) = e.

Assuming by induction that û(k) = X(k)q̃ + ẽ = u(k), v̂(k) = X(k)T q + e = v(k),
we find that equations (4.3) and (5.2) define the same matrices; therefore, from now
on, we will drop the superscript (k) and the hat symbol to ease the notation.

We have

VD−1 vecR(X) = VD−1 vec(uvT)− V vecX =

[
ẽ− (I −G)u
e− (I − L)v

]
,

in view of the relations

D−1 vec(XD +∆X) = vecX,

VD−1 vec(uvT) =

[
Gu
Lv

]
,

which can be easily verified from the definitions of D, G and L, where V is the matrix
defined in (3.6).

10 D. A. BINI, B. IANNAZZO AND F. POLONI

Applying the operator V to both sides of (3.2) yields

V vec(X(k+1) −X) = VD−1 vecR(X) + VD−1U(I2n − VD−1U)−1VD−1 vecR(X)
= (I2n + VD−1U(I2n − VD−1U)−1)VD−1 vecR(X)
= (I2n − VD−1U)−1VD−1 vecR(X),

(5.4)
where the last equation holds since I +M(I −M)−1 = (I −M)−1.

We recall that R = (I2n − VD−1U) and

[
û(k+1)

v̂(k+1)

]
= R−1

[
ẽ−Hu
e−Kv

]

(the latter one being Lu’s iteration). Now we can explicitly compute

R

[
ûk+1 − u
v̂k+1 − v

]
=

[
ẽ−Hu
e−Kv

]
−
(
I2n −

[
G H
K L

])[
u
v

]
=

[
ẽ−Hv
e−Ku

]
−
[
u
v

]
+

[
Gu+Hv
Ku+ Lv

]
=

[
ẽ− (I −G)u
e− (I − L)v

]
= VD−1 vecR(X),

and substitute it into (5.4) to get

V vec(X(k+1) −X) =

[
ûk+1 − u
v̂k+1 − v

]
.

Finally, using the definition of V in (3.6), we find that

[
ûk+1 − u
v̂k+1 − v

]
= V vec(X(k+1)−X) =

[
X(k+1)q̃ −Xq̃

X(k+1)T q −XT q

]
=

[
X(k+1)q̃ + ẽ− u
X(k+1)T q + e− v

]

and thus ûk+1 = X(k+1)q̃ + ẽ, v̂k+1 = X(k+1)T q + e.
The theorem brings deeper insight into Newton’s and Lu’s iterations. For exam-

ple, Theorem 6 of [15], which states that Lu’s iteration is well-defined and converges
monotonically to the minimal solution of the NARE, can now be seen as a special
case of Theorem 3.1. Moreover, Lu’s iteration can be viewed as a structured Newton’s
iteration exploiting the displacement structure found in (3.5). Therefore, the two al-
gorithms take the same number of iterations to converge, as the computation they
perform is the same. Observe also that the Lu version of this algorithm is slightly
faster, since it updates only the 2n generators of the matrix {X (k)} instead of all
the n2 entries. For this reason, we will only present numerical results regarding Lu’s
iteration.

6. Shift technique. In the case where (c, α) = (1, 0), the Jacobian MX appear-
ing in the Newton iteration is singular when X is the solution of the NARE. We refer
to this as the critical case. Several drawbacks are encountered in the critical case, see
the analysis of C.-H. Guo and N. Higham in [8] for more details. The singularity of
the Jacobian does not guarantee the quadratic convergence of Newton’s iteration, in
fact, Newton’s and therefore Lu’s method converge linearly. Moreover, a perturbation
O(ε) in the coefficients of the equation leads to an O(

√
ε) variation in the solution.

These drawbacks can be easily removed by means of the shift technique originally
introduced be He, Meini and Rhee in [13] and applied to Riccati equations in [9] and
[2].

A FAST NEWTON’S METHOD FOR A NONSYMMETRIC ARE 11

A characterization of the critical case can be given in terms of the eigenvalues of
the matrix

H =

[
E −C
B −A

]
, (6.1)

obtained by premultiplying the M -matrix M defined in (1.4) by the matrix J =
diag(In,−In). In fact, the matrix H has a double zero eigenvalue corresponding to a
2× 2 Jordan block (see [9] and the references therein).

The shift technique, as described in [9], consists in a rank-one correction to the

matrix H of (6.1) which gives H̃ = H + ηvpT , where η > 0, v is a right eigenvector of
H corresponding to the zero eigenvalue and p is an arbitrary vector such that pT v = 1.

The nice feature of this transformation is that the Riccati equation associated
with the matrix H̃ has the same minimal solution as the original one, although the
new Jacobian matrix at the solution is not singular. This removes the above men-
tioned drawbacks. Now, the point is to show that it is still possible to provide a fast
implementation of Newton’s iteration for the new equation obtained by means of the
shift technique. This is the goal of this section.

Under the assumptions (1.2), (1.3) a right eigenvector of H corresponding to

zero is v =
[
vT1 vT2

]T
, where v1 = D−1q, v2 = ∆

−1e. This can be seen by direct
inspection using the fact that eTD−1q + qT∆−1e = c = 1 (see equation (3.3)).

The rank-one correction we construct is

H̃ = H + η

[
v1

v2

]
pT ,

where 0 < η 6 d1 and pT =
[
eT qT

]
. It holds that pT v = 1, in fact pT v =

eTD−1q + qT∆−1e = 1. It is proved in [9] that H̃ has a simple zero eigenvalue.

The matrix H̃ defines the new Riccati equation

XC̃X −XẼ − ÃX + B̃ = 0, (6.2)

with

Ã = A− ηv2q
T , B̃ = B + ηv2e

T , C̃ = C − ηv1q
T , Ẽ = E + ηv1e

T . (6.3)

It is proved in [9] that the minimal nonnegative solution of (1.1) is the minimal
nonnegative solution of (6.2).

With the choice of pT = [eT qT], H̃ remains a diagonal plus rank-one matrix, so

is M̃ = JH̃; hence, we only need to prove that M̃ is an M -matrix to ensure that the
algorithms proposed in Sections 3 and 5 can be applied to the equation (6.2). In fact,
we have

M̃ =

[
D 0
0 ∆

]
−
[
q − ηv1

e+ ηv2

] [
eT qT

]
,

and since we chose 0 < η 6 d1 < d2 < . . . < dn, and q ≥ 0, then q − ηv1 =
(In − ηD−1)q > 0, thus M̃ is a Z-matrix. By the Perron-Frobenius theorem applied
to ρI −M , there exists a vector u > 0 such that uTM = 0, and in the critical case
we have uTJv = 0 (observe that uTJ is a left eigenvector of H = JM corresponding
to the zero eigenvalue and recall that right and left eigenvectors corresponding to the
same eigenvalue in a Jordan block of dimension n > 2 are orthogonal); therefore,

uT M̃ = uTM + ηuTJvpT = 0,

12 D. A. BINI, B. IANNAZZO AND F. POLONI

thus by part 1 of Lemma 2.1 M̃ is an M -matrix.
In this way, Newton’s iteration applied to equation (6.2) provides a quadratically

convergent algorithm of complexity O(n2) for solving the Riccati equation (1.1) in the
critical case. Moreover, since the singularity has been removed, it is expected that X,
as minimal solution of (6.2), is better conditioned than with respect to the coefficients
of (1.1), and that a higher precision can be reached in the computed solution. This
fact is confirmed by the numerical experiments as shown in Section 8

7. Numerical stability. Our first concern about numerical stability is proving
that the matrix R(k) = I2n − VD−1U (k) resulting after the application of the SMW
formula to the Jacobian D − U (k)V is well-conditioned whenever the Jacobian is. In
the following analysis, we will assume that the norm

∥∥(D − U (k)V)−1
∥∥

1
is bounded,

and we will drop the superscripts (k) to simplify the notation.
Observe that 0 6 D−1 6 (D−UV)−1, therefore D is well-conditioned. Moreover,

one has

B−1 =

[
(D − UV)−1 0
V (D − UV)−1 I

] [
I U
0 I

]
, with B =

[
D −U
−V I

]
;

therefore B is an M -matrix and is well-conditioned. Now, R = I − VD−1U is the
Schur complement of D in B, and thus R−1 is a submatrix of B−1 [5]. This implies∥∥R−1

∥∥
1

6
∥∥B−1

∥∥
1
, hence R is well-conditioned, too.

Another stability problem could arise from the generators growth during the fast
Gaussian elimination step. Generators growth has been reported in some cases with
the GKO algorithm [17], especially when the starting generators are ill-conditioned.
This is not our case, since the starting generators are bounded, and no significant
generator growth has been observed during our experiments.

8. Numerical experiments. We consider the numerical examples suggested
by L.-Z. Lu [15]. The sequences ωi and ci, which appear in the discretization as the
nodes and weights of a Gaussian quadrature method, are obtained by dividing the
interval [0, 1] into n/4 subintervals of equal length, and by applying to each one the
4-nodes Gauss–Legendre quadrature.

The computation has been performed with three different choices of the param-
eters (c, α), namely, (0.5, 0.5), (1 − 10−6, 10−8), and (1, 0). The latter is the critical
case, and thus the quadratic convergence of Newton’s method is not guaranteed. In
this case, the algorithms are more prone to numerical problems, since the matrices to
be inverted are near-to-singular.

The algorithms have been implemented in Fortran 90 and the tests have been
carried out using the Lahey Fortran compiler on a Xeon biprocessor with 2.8 GHz.
We have compared the Lu’s algorithm presented in [15] with its fast version based on
Algorithm 2. In the critical case, we have made also a comparison with the shifted
algorithm of Section 6. To compute the step (5.1) of the Lu algorithm we have solved
a linear system using the LAPACK la_gesv function.

In Table 8.1 we compare the timing of Lu’s algorithm which has a computational
cost of O(n3) ops, with its fast version which costs O(n2). The numerical results
highlight the different order of complexity. Observe that in the critical case the shift
technique reduces the timings even further.

In Table 8.2 we compare the relative error of the two methods and the number of
steps required. Here the error is computed as ‖X̃ −X‖1/‖X‖1, where X̃ and X are
the solution computed in double and in quadruple precision, respectively.

A FAST NEWTON’S METHOD FOR A NONSYMMETRIC ARE 13

α = 0.5, c = 0.5 α = 10−8, c = 1− 10−6 α = 0, c = 1
n Lu LuF Lu LuF Lu LuF LuS
32 0.002 0.001 0.006 0.002 0.009 0.005 0.003
64 0.015 0.006 0.028 0.008 0.048 0.015 0.004
128 0.101 0.015 0.20 0.036 0.36 0.061 0.013
256 0.709 0.080 1.6 0.16 2.7 0.29 0.064
512 8.591 0.56 18 1.3 31 2.1 0.39

Table 8.1
Comparison of CPU time in seconds of Lu’s algorithm (Lu), its fast version presented here

(LuF), and the shifted algorithm in the critical case (LuS)

α = 0.5, c = 0.5
n Lu LuF
32 4.8 · 10−16 (4) 2.3 · 10−16 (5)
256 1.6 · 10−15 (4) 4.0 · 10−16 (5)

α = 0, c = 1
n Lu LuF LuS
32 5.2 · 10−8 (25) 4.2 · 10−8 (26) 4.4 · 10−16 (6)
256 4.6 · 10−8 (25) 8.0 · 10−8 (25) 1.2 · 10−15 (6)

Table 8.2
Comparison of the relative error (and in parentheses the number of steps) of Lu’s algorithm

(Lu), its fast version presented here (LuF), and the shifted algorithm in the critical case (LuS)

The stopping criterion is based on the computation of

Res =
‖uk − uk−1‖1 + ‖vk − vk−1‖1

2
.

Observe that the cost of computing Res is negligible.
As one can see, in the critical case the accuracy of the solution obtained with the

non-shifted algorithms is of the order of O(
√
ε), where ε is the machine precision, in

strict accordance with [8]. The speed-up obtained is greater than 2 even for small
values of n. In the critical case with size n = 512 our algorithm is about 80 times
faster than Lu’s original algorithm. The problems deriving from the large number of
steps and the poor accuracy are completely removed by the shift technique.

9. Generalizations and future work. Our algorithm can be easily extended
to the case where M is diagonal plus rank k.

A challenging issue is to prove that Lu’s iteration for this problem can be effec-
tively computed with less than O(n2) ops. Actually, the literature provides algorithms
for computing the Cauchy matrix–vector product [3] and for approximating the in-
verse of a Cauchy matrix [18] with O(n log2 n) ops. If these algorithms can be adapted
to deal with singular displacement operators, and if the approximation and the numer-
ical errors introduced do not destroy the quadratic convergence of Newton’s method,
then the computational cost of our algorithm could be reduced further.

Another interesting issue is the acceleration of existing algorithms like the (shifted)
Structure-preserving Doubling Algorithm [10, 12] or the (shifted) Logarithmic and
Cyclic reduction [2, 7], relying on the specific structure of the problem.

14 D. A. BINI, B. IANNAZZO AND F. POLONI

10. Acknowledgments. The authors would like to thank Luca Gemignani and
Beatrice Meini for their helpful comments and suggestions.

REFERENCES

[1] Abraham Berman and Robert J. Plemmons. Nonnegative matrices in the mathematical sci-
ences, volume 9 of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original.

[2] Dario A. Bini, Bruno Iannazzo, Guy Latouche, and Beatrice Meini. On the solution of algebraic
Riccati equations arising in fluid queues. Linear Algebra Appl., 413(2-3):474–494, 2006.

[3] Apostolos Gerasoulis. A fast algorithm for the multiplication of generalized Hilbert matrices
with vectors. Math. Comp., 50(181):179–188, 1988.

[4] Israel Gohberg, Thomas Kailath, and Vadim Olshevsky. Fast Gaussian elimination with partial
pivoting for matrices with displacement structure. Math. Comp., 64(212):1557–1576, 1995.

[5] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition,
1996.

[6] Chun-Hua Guo. Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for
M-matrices. SIAM J. Matrix Anal. Appl., 23(1):225–242 (electronic), 2001.

[7] Chun-Hua Guo. Efficient methods for solving a nonsymmetric algebraic Riccati equation arising
in stochastic fluid models. J. Comput. Appl. Math., 192(2):353–373, 2006.

[8] Chun-Hua Guo and Nicholas J. Higham. A Schur–Newton method for the matrix pth root
and its inverse. Technical Report 2005.9, Manchester Institute for Mathematical Sciences
(MIMS), Manchester, UK, October 2005. To appear in SIAM J. Matrix Anal. Appl.

[9] Chun-Hua Guo, Bruno Iannazzo, and Beatrice Meini. On the doubling algorithm for a (shifted)
nonsymmetric algebraic Riccati equation. Technical report, Dipartimento di Matematica,
Università di Pisa, Italy, May 2005.

[10] Chun-Hua Guo, Bruno Iannazzo, and Beatrice Meini. On the doubling algorithm for a (shifted)
nonsymmetric algebraic riccati equation. Technical report, Dipartimento di Matematica,
Università di Pisa, Pisa, Italy, May 2006. Submitted for pubblication.

[11] Chun-Hua Guo and Alan J. Laub. On the iterative solution of a class of nonsymmetric algebraic
Riccati equations. SIAM J. Matrix Anal. Appl., 22(2):376–391 (electronic), 2000.

[12] Xiao-Xia Guo, Wen-Wei Lin, and Shu-Fang Xu. A structure-preserving doubling algorithm for
nonsymmetric algebraic Riccati equation. Numer. Math., 103(3):393–412, 2006.

[13] Charlie He, Beatrice Meini, and Noah H. Rhee. A shifted cyclic reduction algorithm for quasi-
birth-death problems. SIAM J. Matrix Anal. Appl., 23(3):673–691 (electronic), 2001/02.

[14] Jonq Juang and Wen-Wei Lin. Nonsymmetric algebraic Riccati equations and Hamiltonian-like
matrices. SIAM J. Matrix Anal. Appl., 20(1):228–243 (electronic), 1999.

[15] Lin-Zhang Lu. Newton iterations for a non-symmetric algebraic Riccati equation. Numer.
Linear Algebra Appl., 12(2-3):191–200, 2005.

[16] Lin-Zhang Lu. Solution form and simple iteration of a nonsymmetric algebraic Riccati equation
arising in transport theory. SIAM J. Matrix Anal. Appl., 26(3):679–685 (electronic), 2005.

[17] Franklin T. Luk, editor. Error analysis of a fast partial-pivoting method for structured matrices,
volume 2563 of Advanced Signal Processing Algorithms, Proceedings of SPIE, 1995.

[18] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A fast algorithm for the inversion
of general Toeplitz matrices. Comput. Math. Appl., 50(5-6):741–752, 2005.

